お問い合わせ
ダウンロード
マニュアル、データシート、ソフトウェアなどのダウンロード:
フィードバック
電気自動車のトラクション・インバータとモータ
トラクション・インバータとモータは、EVのパワートレインの心臓部。これらのサブシステムの効率性改善は、車両の長い走行可能距離、そして優れた性能やコストとして直接反映されます。
SiCパワー半導体の採用は、優れた効率性とトラクション・インバータの小型化に寄与しています。制御アルゴリズムやモータ構造は、効率性とコストに関する厳しい目標を達成するために最適化が行われています。
EVの設計者は、新しいトラクション・インバータ・デザインを種々のモータ・デザインと組み合わせて、電動モビリティの要望にかつてないほど適した、新しいハイブリッド構造を創造しようとしています。
再現性のあるインバータの測定技法
トラクション・インバータおよびモータ技術
EVにはさまざまな種類の電気モータが採用されていますが、どのEVにも、PWM電圧信号をモータの固定子に送り、120°ずつ隔てられた3つの正弦波電流を生成するためのアプリケーションが必要です。通常、高電圧入力の変調は、20~100 kHzの周波数範囲、高電圧のIGBTまたはMOSFETスイッチングによって行われます。設計者は、安全なタイミングを維持しながらスイッチング中のエネルギー損失を最小限にするために努力しています。
ゲート・ドライバは、マイクロコントローラ(MCU)サブシステムによって制御されて、スイッチング・デバイスのタイミングを計っています。制御回路は、高電圧部から絶縁されていなければなりません。
多くの場合、インバータ・コントローラには、PWM出力を正確に変化させるためにフィールド指向制御(FOC)などのDSPアルゴリズムが採用されています。インバータのMCUは、ドライバの入力やモータの現在の速度に基づいてロータの直軸(D)と磁界または横軸(Q)の極間の角度を制御し、滑らかで最適なトルクを実現しています。モータのロータ上にあるエンコーダやレゾルバなどのセンサは、ロータ角のフィードバックを送信します。
重要なインバータ信号の解析
パルス幅変調や多相電流および電圧波形は、歴史的に見ても、オシロスコープやそれを頼りにするエンジニアにさまざまな課題をもたらしています。これらの波形を確認したり測定したりできることは、インバータの信頼性、堅牢性、電源の密度や効率性を最適化するうえでいまだに非常に重要です。
6および8チャンネルのオシロスコープの導入は、三相システムの調査を大幅に容易にしましたが、インバータの場合は、特殊な測定テクニックも必要です。
- PWM信号のトリガは困難。そのため、再現性のある安定した測定が難しい。安定した時間基準を確保するために、十分注意するが必要である。
- 三相システムの解析には、個別の相ならびにシステム全体としての電圧、電流、位相角、および電力の測定が必要。フェーザ図は、振幅、位相角、バランスの確認に理想的。
4/5/6シリーズ・オシロスコープのインバータ/モータ/ドライブ解析ソフトウェアは、PWM出力のトリガや三相測定の設定を簡素化します。フェーザ図は、視覚的理解や三相の電気的問題のデバッグに役立ちます。
詳細はこちらをご覧ください。
詳細はこちらをご覧ください。
モータ負荷が変動する中でのシステムの動作を理解する
電源の高密度化や効率化を追求するには、次のものを含むさまざまなテスト条件下で、ドライブやモータの動的性能を理解して解析することが重要です。
- モータの起動
- さまざまなモータ負荷
- モータの停止
テスト時間はテスト・プランによって異なり、数秒~数分に及びます。ロング・メモリを持ったオシロスコープは、実行中の関連情報をすべて保存し、波形やプロットとして表示します。高速データ記録機能を使用すれば、エンジニアは、波形の特定部分を拡大して問題を確認することが可能になります。一方、パワー・アナライザは通常、校正された三相測定に対応していますが、高いサンプル・レートのデータにはアクセスできません。
DQ0などのベクトル制御パラメータの詳細解析
クローズド・ループ・インバータ/モータ・システムは、フィードバックを利用することで、オープン・ループ・システムよりも優れた速度とトルクの制御を実現します。クローズド・ループの「ベクトル」コントローラはリアルタイム計算を行って、角度と電流のフィードバックを、リニア・スケーリングが可能な単純な変数(DとQ)に変換します。その後、スケーリングされたDとQのパラメータは逆変換され、スイッチを駆動する変調器に入力されます。
これらの重要な計算はコントローラの深部で行われるため、その他のシステム・パラメータと関連付けながらDとQを検討するのは困難です。5/6シリーズB MSOのIMDAアプリケーションは、独自の測定であるDQ0(直接直交ゼロ)に対応しており、エンジニアがコントローラについて理解するうえで役立ちます。このアプリケーションは、パーク変換とクラーク変換を組み合わせることで、インバータの出力波形からDとQの数学的計算を行います。結果は、数値の測定値として、さらには合成ベクトルを用いるフェーザ図として表示されます。エンコーダ角を取り込めば、エンジニアは、QEIインデックス・パルスとともに使用したときに、ロータ・マグネットのゼロ位置にそろったDQ0ベクトルを確認することができます。これらの視覚化ツールは、モータが実際に動作しているときのコントローラ性能を、独自の方法で視覚的に表示します。
機械的測定値と電気的測定値の相関関係の把握
電子機器やアルゴリズムに関する決定の影響を理解するために、エンジニアは、モータの機械的性能と電気的測定値の相関関係を把握できなければなりません。モータの角度、方向、速度、加速度、トルクは、システム性能を把握するためのカギとなります。トラクション・インバータ入力部の電気的パラメータとモータの機械的出力の両方を測定できると、エンジニアは、システム全体の効率性を判断することが可能になります。
速度、方向、角度などの機械的測定値は、センサ信号によって変化します。これらの信号は、テスト機器でデコードしてから表示する必要があります。多くのブラシレスDCモータには、ホール・センサが内蔵されています。このセンサには、デジタルまたはアナログ・プローブを使用してアクセスが可能です。システムには、QEI(直交エンコーダ・インタフェース)センサを採用しているものもあります。
トルクは、モータ出力部にある専用のトルク・センサを用いて測定が可能です。また、トルクは、実効電流に倍率を適用することで概算することもできます。
テクトロニクスのIMDAソフトウェアを使用すれば信号はデコードされ、5シリーズBおよび6シリーズB MSOオシロスコープで速度、加速度、方向、角度、トルクの表示が可能となります。
ワイド・バンドギャップ・パワー・デバイスの統合の影響を理解する
800 Vアーキテクチャへの移行は、ケーブルやバッテリのコスト低減、熱損失の減少、システム効率の向上などのメリットをもたらします。SiC MOSFETは、スイッチング電圧の高電圧化とスイッチング損失の低減を実現するものの、シリコン・デバイスをベースにした従来のテスト・プランはもう通用しません。
ワイド・バンドギャップ半導体をテストする際の主な課題には、次のようなものが挙げられます。
- ハイパワー・レベルでの電流、電圧プロービング
- 高コモン・モード電圧が存在する中での、ハイサイドMOSFETにおける正確な信号測定
- ダブル・パルス・テストなどの標準化されたテストを用いたスイッチング損失の測定
テクトロニクスでは、オシロスコープ、高電圧差動プローブ、電流プローブ、光アイソレーション型プローブ、信号源、高精度電源など、SiC MOSFETをベースにしたトラクション・インバータのテストに関するソリューションを提供しています。
詳細はこちらをご覧ください。
EVのトラクション・インバータとモータ・リファレンス・システム
EVのパワートレイン設計のテストには、オシロスコープ、適切なプローブ、信号源、そしてアプリケーション・ソフトウェアが必要です。このシステムは、アプリケーションに合わせてカスタマイズすることができます。
機器/プローブ/オプション | 数量 | 概要 |
MSO58B-BW1000* | 1 | 1 GHz、8チャンネル・オシロスコープ |
5-PRO-AUTOMOTIVE-3Y | 1 | インバータ/モータ/ドライブ・ソフトウェア解析オプションの5-IMDA、5-IMDA-DQ0、5-IMDA-MECH、ならびに車載用シリアル・バスのデコードを含む、自動車業界向けソリューション・バンドル |
THDP0200型 | 3 | 200 MHz、±750 V、高電圧差動プローブ |
TCP0030A型 | 3 | 120 MHz、30 Arms、スプリット・コアAC/DC電流プローブ |
TLP058型 | 1 | 8チャンネル・ロジック・プローブ |
TEKSCOPE-ULTIMATE | 1 | IMDA解析機能や充実したシリアル・バス・サポートを含む、オフライン解析用TekScope PCソフトウェア |
TEKDRIVE-STARTER | 1 | TekDriveデータ・ストレージ・サブスクリプション、ティア毎、年間ユーザ・ライセンス |